Building a PC for Virtual Reality: Oculus Rift, HTC Vive, and VR Gaming

Last updated: August 2019

Virtual reailty headsets are here, but they require some serious PC hardware to power properly. That's where we come in with this guide.

For most PC gamers, the two major headsets we're interested in using are the Oculus Rift and the HTC Vive.

This guide is meant to prepare you for building a PC capable of high-quality VR gaming, or upgrading your current PC to VR-gaming standards. For our purposes, we’ll be focusing primarily on the hardware demands of the major headsets: the Rift and the Vive (with consideration for the Valve Index as well).

First, we'll review a number of Example VR Gaming PC Builds.

Second, we'll go in-depth about VR hardware requirements to build a better Understanding of VR Platforms.

After that, we'll discuss Optimization and Review Key Components.

EVE Valkyrie: A multiplayer, space-based dogfighting game.

Example Builds

VR still represents the bleeding edge of gaming technology. As such, it is outside the reach of some of the PC builds recommended on our site. In this section, we provide six example builds suitable for VR gaming.

First, an important note on multi-GPU systems:

Support for rendering VR games with multiple GPUs is currently still under development. We believe that using multiple GPUs will be the best way to achieve high framerates and high graphical quality in future VR games. However, it may be some time before games are released with support for multi-GPU rendering. The first round of made-for-VR games, such as EVE Valkyrie and Edge of Nowhere, do not take advantage of multiple GPUs, thus making virtually no difference in your performance whether you have two GPUs or one.

Because of this, we offer multi-GPU solutions only as an alternative option for the time being. We believe multi-GPU systems will be more future-proof compared to single-GPU systems, and they will absolutely achieve greater performance when gaming on a standard monitor. However, if you’re looking to save money until multi-GPU support for VR matures, we advise you to purchase just one graphics card now and assess your options for buying an additional card later on.

With that said, let’s look at our example builds:

Oculus/Vive/Index Minimum Specs VR Build ($570)

This is the absolute minimum-budget build we can recommend that's still capable of powering VR headsets at minimum requirements. If you're looking to cut corners on the budget, this is how to do it.

CPU: AMD R3 3200G
GPU: RX 570
Motherboard: ASRock X570 Phantom Gaming 4
Storage: 500GB Seagate SATA HDD
Power Supply: EVGA SuperNOVA 550 G3
RAM: 8GB (2 X 4GB) DDR4-2400
Case: Thermaltake Versa H21
CPU Cooler: Stock
Operating System: Windows 10

Oculus/Vive/Index Recommended Specs VR Build ($750)

This build uses the recommended specifications from the Oculus Rift, HTC Vive, and Valve Index—substituting more modern, slightly faster parts. According to the VR designers, these are the specifications delivered to developers to ensure that they can optimize for a known hardware configuration.

We have our skepticism that a PC built to these specifications will maintain 90 FPS in the most demanding made-for-VR games on maximum settings, and VR games are often showcased on slightly more powerful machines. However, this is the lowest-tier build that can assure you a quality experience accross the majority of VR applications. As an added benefit, this system will play almost any game on maximum settings on a standard monitor at 1080p, which makes this a fantastic general gaming PC in its own right.

CPU: AMD R3 3200G
GPU: RX 580
Motherboard: ASRock X570 Phantom Gaming 4
Storage: 1TB Intel NVMe M.2 SSD
Power Supply: EVGA SuperNOVA 550 G3
RAM: 8GB (2 X 4GB) DDR4-2400
Case: Fractal Design Focus G
CPU Cooler: Deepcool Gammaxx 400
Operating System: Windows 10

Solid VR Build ($1300)

This is a build for people who want to experience VR without spending an insane amount of money, but still play games with reasonable detail and achieve high framerates on more demanding games. The Ryzen 5 CPU has 6 cores and 12 threads, which will be very helpful keeping the framerate up in optimally multithreaded games. The RX 5700 is a very powerful midrange GPU, and will get most games up to VR friendly FPS with max graphics. We also upgraded the case, motherboard, power supply, and SSD space.

This build offers huge bang for your buck. Lots of performance, build quality, reliability, and upgradability here.

CPU: AMD R5 3600
GPU: RX 5700
Motherboard: Gigabyte X570 Gaming X
Storage 1: 1TB Intel NVMe M.2 SSD
Storage 2: 1TB Crucial SATA SSD
Power Supply: EVGA 650 GQ
RAM: 16GB (2 X 8GB) DDR4-2666
Case: Corsair 275R
CPU Cooler: Noctua NH-U12S SE-AM4
Operating System: Windows 10

Hardcore VR Build ($1800)

This is for those who want to know that their machine can handle VR games that will be coming out a year or two from now. You’ll safely achieve 90 FPS in just about any upcoming game made for the Rift or Vive.

Compared to the Solid VR Build, the upgraded components will add a fair amount of gaming performance for getting high FPS at max settings, but provide an even bigger boost to overall build quality. Cooler, quieter, nicer looking, and even more stable and reliable.

CPU: AMD R7 3700X
GPU: RTX 2070 Super
Motherboard: Gigabyte X570 Aorus Elite
Storage 1: 1TB Samsung NVMe M.2 SSD
Storage 2: 1TB Intel NVMe M.2 SSD
Power Supply: EVGA SuperNOVA 750 G3
RAM: 16GB (2 X 8GB) DDR4-3200
Case: Corsair 750D
CPU Cooler: be quiet! Dark Rock 4
Operating System: Windows 10

Extreme VR Build ($2600)

We’d recommend this build for people looking to get the most immersive experience out of their VR. The 12-core R9 3900X offers huge single and multithreaded performance, and the RTX 2080 Super is one of the fastest main-line graphics cards (if budget is no concern, however, get the RTX 2080 Ti instead). We’ve also introduced a large cooler and included an 850 Watt, 80+ Gold Certified, fully-modular power supply to keep this machine running as silently as possible, and offer plenty of power for overclocking or adding a second GPU in the future.

CPU: AMD R9 3900X
GPU: RTX 2080 Super
Motherboard: Gigabyte X570 Aorus Pro WiFi
Storage 1: 1TB Samsung Pro NVMe M.2 SSD
Storage 2: 2TB Intel NVMe M.2 SSD
Power Supply: EVGA SuperNOVA 850 G3
RAM: 32GB (2 X 16GB) DDR4-3200
Case: be quiet! Dark Base 700
CPU Cooler: be quiet! Dark Rock Pro 4
Operating System: Windows 10

No Compromises VR Build ($6000)

If you want to be able to play VR games, stream, edit 4K video, and/or do 3D modeling and animation, this is the PC for you. An unfathomably-high-core-count CPU, paired with one of the most powerful graphics cards available. This build also features a very fast set of SSDs; tons of RAM for multitasking; and an exceptionally stable, reliable, and efficient power supply.

This monster won't usually have any more VR gaming performance than the previous build, except in rare very-GPU-dependent situations. The upgrades help more for streaming, creating content, and other CPU-intensive work (or if you just want to have the very best).

CPU: TR 2990WX
GPU: RTX 2080 Ti
Motherboard: Gigabyte X399 Aorus Xtreme
Storage 1: 1TB Samsung Pro NVMe M.2 SSD
Storage 2: 2TB Samsung NVMe M.2 SSD
Power Supply: Seasonic Prime 1000 Titanium
RAM: 64GB (4 X 16GB) DDR4-3200
Case: Phanteks Enthoo Primo
CPU Cooler: Fractal Design S24
Operating System: Windows 10

Elite Dangerous: A space-based exploration, trading, and dogfighting simulator.

Understanding VR Platforms

The Rift and Vive certainly have some differences in terms of the experience they offer. The Vive has partnered with SteamVR to offer native support for many of Valve’s old games along with an open API for developers. At $800, the Vive is significantly pricier than the $600 Rift, but it comes with more materials, including two proprietary controllers, and two "base stations" that track the user's entire body movement in their room. By comparison, the Rift is designed as a sitting experience, with only the user's head movement being tracked. For now, there’s no “best headset” to choose from.

Building a PC to play VR games doesn't have to be a complicated process. However, creating a genuinely immersive VR experience is technically demanding, and it’s helpful to understand the graphical demands of the VR platform.

If you prefer watching videos over reading, this video covers many of the points made in this guide:

To begin, try to think of each lens in the headset as a separate display. The Rift and Vive use a dual-lens setup, with one lens (or display) dedicated to each eye. Both headsets have a resolution of 2160x1200 (or 1080x1200 per display), with a refresh rate of 90Hz. These numbers are very important.

That’s not the whole story, though. The headsets also render an “eye buffer” of 1.4x the size of the 2160x1200 resolution. This results in a true render resolution of 3024x1680, or 1512x1680 in each eye. The purpose of the eye buffer is to compensate for the distortion of the headset's lenses. With a rendering resolution of 3024x1680 at a 90Hz refresh rate, this creates a graphical demand of up to 457 million pixels per second. That’s a lot.

To make the demands even more daunting, the headsets have to render two slightly different scenes per frame to ensure correct parallax and depth cues. So, it’s not quite as simple as looking at the raw pixel cost combined between the two lenses. This is known as “stereo rendering,” and it increases both the CPU and GPU demand of rendering compared to rendering one image on a single flat screen.

According to NVIDIA graphics programmer Nathan Reed, in the worst case scenario, stereo rendering can almost double the graphical demand of gaming at on a VR headset compared to a computer monitor of the same resolution. Certain graphical operations, such as physics simulations and shadow map rendering, aren’t doubled with a stereo-rendering device, but the actual rendering is still done separately for each eye. To be clear: If you were to render out two 1512x1680 scenes on a headset, it would require even more graphical horsepower than rendering out a 3024x1680 scene on a computer monitor.

So, how do you wrap your head around the true graphical demand of these headsets? If you’re familiar with gaming benchmarks, we have a few relatively simple comparisons to at least give you a frame of reference.

First, let’s forget about stereo rendering for a moment and simply focus on raw pixel count.

1080p resolution (1920x1080) at 60Hz is generally seen as the standard target setting for modern gaming. That also happens to be about one-quarter the raw pixel rendering cost of a VR headset display at 90Hz. So, you could think of the raw pixel demands of VR gaming at 90Hz as being approximately 4 times the demand at 1080p/60Hz.

Another simple comparison: VR gaming has roughly 90 percent the pixel demand of gaming at 4K resolution (3840x2160) at 60Hz. If you’re familiar with gaming benchmarks, you’ll know that achieving 60 FPS at 4K resolution is no simple feat. Very few gamers have PCs that can play something like Fallout 4 or the Witcher 3 at 4K/60 FPS.

Once again, before factoring in the additional costs of stereo rendering, let’s compare the raw pixel rendering cost of each display:

  • 124 million pixels/second: 1080p monitor @ 60Hz
  • 457 million pixels/second: Rift/Vive @ 90Hz
  • 498 million pixels/second: 4K monitor @ 60Hz

Now, factor in the additional graphical demand of stereo rendering with VR headsets, which multiplies the total hardware demand on the PC by somewhere between 1x and 2x (in other words, anywhere from 0% to 100%), depending on what’s occurring in the game (usually much lower than 2x/100%). It’s easy to assume that playing many games on the Rift or Vive will require even more computing power than it would take to play the same game at 60 FPS at 4K resolution.

However, you shouldn’t despair. As we’ll discuss in our next section, "Optimization and Official Recommended Specs," there are several reasons to believe you can have a fully immersive VR experience without a supercomputer.

If you need to get up to speed on this discussion of resolution, it might help to check out our quick guide to screen resolution. Once you’ve got a handle on what this resolution and framerate will demand of your computer, we can begin to break down what components should suit you best.

Your framerate (frames per second, or FPS) is the number of images your PC can produce every second. A higher framerate will make your gameplay appear smooth, while a lower framerate will make the game stutter. As you might be able to guess, a higher framerate is better, and requires more computing power.

Your screen’s refresh rate (measured in Hz) will determine the maximum framerate you’ll be able to see. Many standard computer monitors come with a 60Hz refresh rate, meaning you can see a maximum framerate of 60 FPS, even if your PC is powerful enough to produce higher framerates. For the Rift and the Vive, the maximum framerate is 90 FPS. This also happens to be the framerate that Rift and Vive developers often cite as the minimum or necessary framerate to maintain an immersive VR experience. While the occasional dropped frame may be tolerable when gaming on a monitor, the experience of stuttering gameplay is much more uncomfortable with a screen strapped to your face.

In their Best Practices manual, Oculus advises developers to target framerates exceeding 90 FPS in order to avoid this issue: "Your code should run at a frame rate equal to or greater than the Rift display refresh rate, v-synced and unbuffered. Lag and dropped frames produce judder which is discomforting in VR." And in reality, framerate is almost never constant while playing a game. It's not uncommon for a game to drop framerate on occasion, meaning that if you really want to lock your framerate at 90 FPS, your PC should really be capable of averaging 100+ FPS in your game of choice. For more information on framerate, read our detailed blog post on FPS.

If you’re keen to learn more about the graphical challenges of VR gaming, Valve developer Alex Vlachos gave a comprehensive presentation in March 2015 on the subject of Advanced VR Rendering (pdf version available here). Once again, there’s also the Oculus Best Practices reference for developers, which goes into even more detail about VR rendering demands.

The Climb: A rock-climbing experience from Crytek, the makers of Crysis.

Optimization and Official Recommended Specs

Looking at the numbers, it’s understandable to be worried about how well your PC will handle games on the Rift or Vive. In theory, playing the most demanding modern PC games in VR will require an incredible amount of computing power. This can be especially concerning when considering the need to maintain a high framerate of 90 FPS to sustain immersion. With the advent of VR, a high and steady framerate is more important than ever.

Thankfully, there are several reasons to trust that you can still experience VR games at their ideal level of performance without annihilating your wallet.

Both Oculus and HTC have set “recommended specs” for PC builders, and they happen to be identical. Both companies promise that the recommended hardware is sufficient for powering games designed specifically for the Rift and Vive, which both have an expected 2-year life cycle.

The two most critical components for a VR build are a graphics card equivalent to the NVIDIA GTX 970 or AMD R9 390, and a CPU equivalent to the i5-4590. The modern, slightly faster GPU equivalents are the GTX 1060 3GB or RX 570.

(NVIDIA's GTX 1070 is roughly 60% more powerful than the GTX 970, so it is well above the minimum threshold.)

A modern equivalent to the Intel i5-4590 CPU would be the AMD R3 3200G.

In our Example Builds section above, we’ve compiled complete build recommendations that use these components.

Building a complete PC with Oculus' or Vive's recommended specs should cost around $1000, but could be done for closer to $750 if you buy some of your parts on sale or skimp in a few areas.

According to Oculus community manager Andres Hernandez, all made-for-VR games coming to the consumer version of the Rift will be designed to run well on PCs built with at least the recommended specs. That means that all games designed for VR and hoping to appear in the official Oculus store will need to be optimized for the recommended specs. It’s unlikely that all games will run on maximum settings at 90 FPS with that hardware, but they should be able to run at 90 FPS with at least “acceptable” levels of graphical detailing. That will all depend on the game and its level of graphical intensity. (In almost any case where your PC cannot run a game at a steady 90 FPS, you should lower graphical settings until you achieve that framerate.)

In reality, this means that games specifically designed for VR do not have graphical quality on the level one might expect of the most graphically demanding modern games. In order to ensure games run smoothly on the Rift/Vive at the recommended PC specs, VR game developers have to cut back on extremely high-quality textures and other graphically intense effects and details. As a result, you’ll get a smooth gameplay experience, but don’t expect made-for-VR games to push the most extreme boundaries of computing graphics.

However, keep in mind that the official Oculus or Vive stores are not the only way to play VR-compatible games. There are plenty of opportunities to experience games in VR that were not built from the ground-up with VR in mind, as we’ve seen with VR-friendly fan mods of many popular games. Some developers are also likely to make VR-compatible patches for games not specifically designed for VR, and those games will not necessarily be optimized to perform well on a PC built with the recommended specs. To properly play those games in VR, you’ll need something more powerful than what the recommended specs will get you. But don’t worry—we’ve got you covered for those circumstances as well.

Also note that software developers are continually coming up with ways to reduce the graphical demand of VR headsets. One of the most promising techniques under development by NVIDIA is called multi-resolution shading, which basically helps reduce the rendering of ‘eye buffer’ pixels that are destined to never appear on the screen. Such advancements could mean that VR will demand less of hardware in the future.

With all of that in mind, let’s move on to discussing the importance of each computer component when it comes to building a PC for VR.

Chronos: A dungeoneering action/adventure RPG.

Valve's VR Performance Test

Valve has a VR Performance Test that will determine whether or not your system can perform VR content at 90 FPS. According to Valve, the test takes 2 minutes, and will let you know if your performance is lacking in GPU, CPU, both, or neither.

Component Overview

Once you’ve got a handle on what gaming on VR headsets will demand of your computer, we can begin to break down what components should suit you best. We’ve listed each major PC component out in order of importance, with a little explanation on how each component influences VR gaming performance.


Your graphics processing unit is the most important component to consider when building your VR PC, as it’s more critical than ever to maintain the recommended 90 FPS framerate. Atman Binstock, Chief Architect at Oculus explains further: “Traditionally, PC 3D graphics has had soft real-time requirements, where maintaining 30-60 FPS has been adequate. VR turns graphics into more of a hard real-time problem, as each missed frame is visible. Continuously missing framerate is a jarring, uncomfortable experience. As a result, GPU headroom becomes critical in absorbing unexpected system or content performance potholes.”

As mentioned above, the developers at Oculus have recommended the NVIDIA GTX 970 or AMD R9 390 (or 290) as the minimum starting point to get the “full Rift experience.” If you can afford it, it would be wise to consider an even more powerful GPU in order to give yourself additional headroom for achieving 90 FPS—or higher graphical quality—in more demanding games.


The official Oculus blog also includes minimum required specs for your CPU. The slowest processor recommended is an Intel i5-4590 or equivalent (we recommend the newer AMD R3 3200G). When gaming on a flat monitor, you can often get away with using a cheap CPU, but it’s important not to scrimp on the CPU when it comes to VR gaming. CPU bottlenecks are more likely to occur—especially for poorly optimized games.

If you want to read more about CPU cores as they relate to VR, Rock, Paper, Shotgun has a solid article on the subject. The end of the article sums the evidence up nicely: “If you have a remotely recent quad-core Intel CPU, certainly within four years old and probably within six, do nothing. All, for now, is well.”

Beyond the minimal-yet-capable AMD R3 3200G or similar-performing Intel i3-9100, the best CPU for VR gaming is the AMD R9 3900X. It has 12 cores, high clock speeds, and an efficient architecture. It offers huge single-threaded performance (good for most games) as well as huge multi-threaded performance (good for some games, and content creation).


The recommended onboard RAM for most games hovers around 8GB, and the same holds true for VR. The folks at Oculus recommend a minimum of 8GB, and the general consensus online seems to match the advice given by the VR developers. If you plan to also be editing video or rendering graphics with your VR PC, it might be wise to upgrade to 16GB. Otherwise, 8GB will likely be plenty. RAM is relatively cheap and easy to install, making it easy to upgrade if you need more later on.


There’s been plenty of debate over the gaming performance boost that solid-state drives (SSD) provide when compared to their spinning brethren (hard drive disks). Using an SSD certainly results in faster read/write speeds, and can be a real boon when working with large files or media management. But when it comes to VR, a solid-state drive should have no real-world affect on your virtual reality experience.

That said, having an SSD onboard will speed up your computing experience considerably. It might not be necessary for budget builders, but for those with a little extra cash, a solid state drive is our most highly recommended addition.


There’s a lot to consider when selecting your motherboard. While not directly affecting the VR experience, your motherboard will provide the foundation for the rest of your hardware. You’ll want something that is not only compatible with your CPU, but also of decent quality.

You’ll also want to make sure that your motherboard can support all of your peripherals (such as USB 3.1 or E-SATA), and supports Crossfire/SLI if you plan on using multiple graphics cards.

These headsets also use a considerable number of USB ports. Make sure your motherboard has all the necessary ports for your peripherals, as well as three USB 3.0 ports and at least one USB 2.0 port available for the headset and tracking cameras.

If you’re looking for more information on motherboards, Tom’s Hardware has a great beginner’s guide to selecting a motherboard.


There’s not much to say about the power supply as it affects VR, as the quality of the PSU isn’t going to directly impact what’s going on in your goggles. Still, if you’re building for VR, it’s best to think toward the future. You’ll be running some pretty power-hungry peripherals, and having an efficient power supply can help cut down on immersion-ruining fan-noise. Also, if you’re thinking of adding additional graphics cards in the future, plan ahead and make sure your power supply will pack enough punch. Graphics cards are often the most power-hungry component in your PC, and adding multiple GPUs sucks up the wattage.

Edge of Nowhere: An adventure game set in the untouched arctic, where only happy and safe things happen.

Conclusion / Tips

VR is the next frontier of gaming, and there’s still a lot to learn. As people spend more time with each headset, we’ll be able to learn more about the idiosyncrasies behind the platforms. Still, we’ve managed to pick up a few general tricks we’d like to pass along:

  • Add a tactile surface to important buttons on your gaming keyboard or controller. This will let you know when your hands are in the right position, without having to remove your VR headset or blindly fumble for the proper configuration.
  • Stay organized! There will be a lot of cords and peripheral components accompanying whatever headset you choose. That, coupled with all of the loose components and cords that come with building a PC means that you’ll have plenty to organize. Save your boxes and bags, and try to keep your cords managed. The Oculus alone requires 2 USB 3.0 ports and 1 HDMI 1.3 video out port. These can quickly tangle up with other peripherals if you’re not organized.
  • Keep your headset clean! Regardless of which VR model you’ve chosen, chances are that it will be strapped to your face. Sweat and oil from your hair will accumulate on the set over time, and it's good to periodically wipe everything down so your friends aren’t hygienically horrified when you try to introduce them to “The Future of Gaming.”

About Us

Kevin Connolly is an author, photographer and lifelong computer geek. His work has been featured in BBC, NPR, and Digital Trends.

James Andrews is the content manager of Logical Increments.

Logical Increments helps more than a million PC builders each year with hardware recommendations for any budget.

Special Thanks

Special thanks to members of the official Oculus forum: owenwp, cybereality, kojack, MichaelNikelsky, galopin, and gunair.

Additional special thanks to members of /r/oculus: whitedragon101, kontis, linkup90, jecowa, and coznefx.


  1. Hard OCP: Conclusion - HDD Vs. SSD Real World Gaming Performance
  2. IT PRO: HTC Vive VS Oculus Rift VS Playstation VR: Release Date, Price, Specs and Games
  3. VRCircle: HTC Vive And SteamVR: What You Need To Know
  4. Tom’s Hardware: How To Choose A Motherboard: A Guide For Beginners - Basics And Component Overview
  5. Avegant Glyph
  6. Oculus Rift Kickstarter campaign
  7. Ars Technica: HTC Exec: Expect ‘a Slightly Higher Price Point’ for Valve’s Vive VR
  8. Oculus Rift: Powering The Rift
  9. Rock Paper Shotgun: Quadcore Gaming
  10. Oculus Rift: The Rift's Recommended Spec, PC SDK 0.6 Released, And Mobile VR Jam Voting
  11. Table of contents source
  12. Valve (YouTube): Advanced VR Rendering by Alex Vlachos (Valve)
  13. Wired: Here’s What Your PC Needs To Run Oculus Rift
  14. Fast Company: Oculus Rift's PC Requirements Are Virtual Reality's Achilles' Heel
  15. Alex Vlachos: Advanced VR Rendering (GDC 2015 Presentation)
  16. Developer Center: Documentation: Rendering Techniques
  17. Road to VR: NVIDIA Takes the Lid Off ‘Gameworks VR’ – Technical Deep Dive and Community Q&A